

SSC65T20GTF

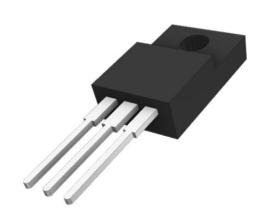
Trench FSII Fast IGBT

> Features

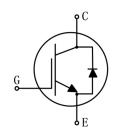
V _{CES}	V _{GES}	lc
650V	±20V	40A@25 ℃
		20A@100 ℃

Description

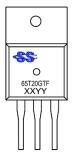
- High ruggedness performance.
- 10µs short circuit capability.
- Positive VCE (sat) temperature coefficient.
- High efficiency for motor control.
- Excellent current sharing in parallel operation.
- RoHS compliant.


Applications

- Home appliance
- Motor drives
- General inverter


> Ordering Information

Device	Package	Shipping			
SSC65T20GTF	TO-220-3L	50/Tube			
Minimum Purchase Quantity: 1K/Box					


Pin Configuration

TO-220F (Top View)

Pin Configuration

Marking

(XXYY: Internal Traceability Code)

\succ Absolute Maximum Ratings (T_{vj}=25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit		
V _{CES}	Collector-Emitter Voltage	650	V		
V _{GES}	Gate-Emitter Voltage	±20	V		
ı	Callagtar Current	Tc=25℃	40	Δ.	
Ic	Collector Current	T _C =100℃	20	Α	
Cpuls	Pulsed Collector Current, tp limited by Tvjm	80	Α		
D-	Dawer Dissipation 8	T _A =25℃	53	١٨/	
P _D	Power Dissipation ^a T _A =100°C		26	W	
T _{VJ}	Operating Junctio Temperature Range	-40~175	C		
T _{STG}	Storage Temperature Range	-55~150	${\mathfrak C}$		
Tsc	Short circuit withstand time	10	us		

\succ Thermal Resistance Ratings (T_{vj}=25°C unless otherwise noted)

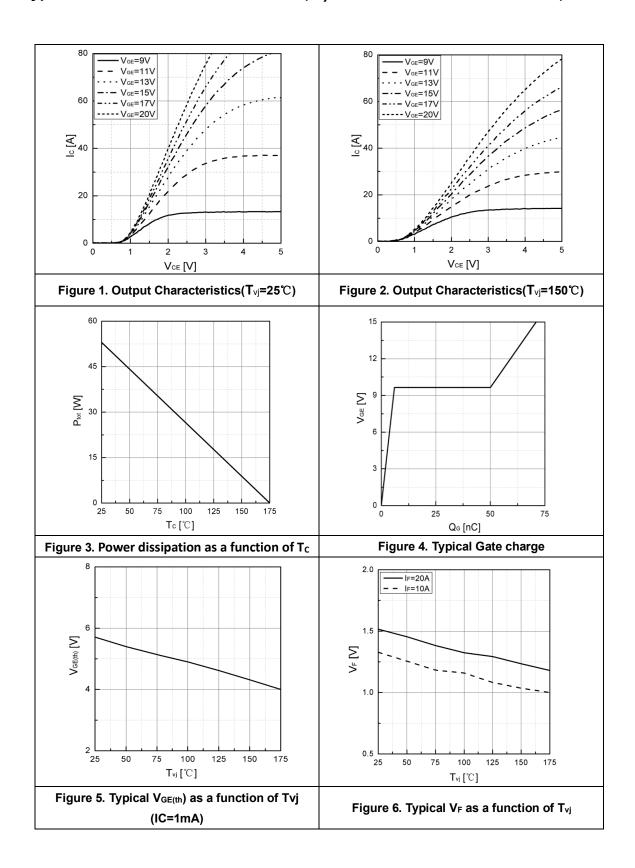
Symbol	Parameter	Ratings(MAX)	Unit
ReJA	Junction-to-Ambient Thermal Resistance	50	°C /\//
R _{0JC} Junction-to-Case Thermal Resistance		2.8	°C/W

Note:

a. The maximum current rating is package limited

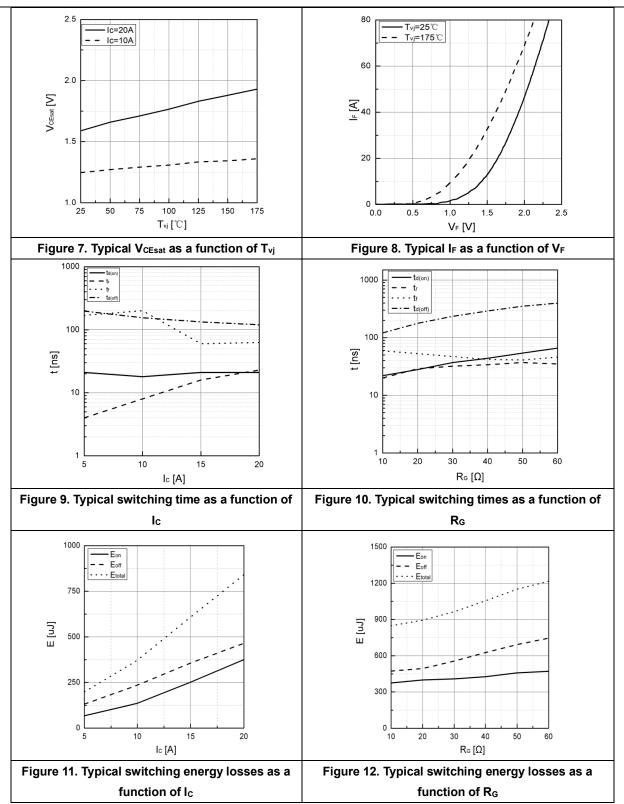
\succ Electrical Characteristics of IGBT (T_{vj}=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
V _{(BR)CES}	Collector-Emitter Breakdown Voltage V _{GE} = 0V, I _C = 0.25mA 650				V		
	Collector-Emitter Leakage	V _{GE} =0V, V _{CE} =650V, T _{vj} =25℃			50	uA	
Ices	Current	V _{GE} =0V, V _{CE} =650V, T _{Vj} =150°C			100	uA	
$I_{GES(F)}$	Gate to Emitter Forward Leakage	V _{GE} = +20V, V _{CE} = 0V			100	nA	
I _{GES(R)}	Gate to Emitter Reverse Leakage	V _{GE} = -20V, V _{CE} = 0V			-100	nA	
Vos. "	Collector-Emitter Saturation	I _C =20A, V _{GE} =15V, T _{vj} =25°C		1.6		V	
$V_{\text{CE(sat)}}$	Voltage	I _C =20A, V _{GE} =15V, T _{vj} =175°C		1.9		V	
$V_{\text{GE(th)}}$	Gate Threshold Voltage	I _C = 1mA, V _{CE} = V _{GE}	5.2	5.7	6.2	V	
Cies	Input Capacitance			1700			
C_{oes}	Output Capacitance	$V_{CE} = 30V$, $V_{GE} = 0V$,		72		pF	
Cres	Reverse Transfer Capacitance			13]	
$T_{D(ON)}$	Turn-on delay time			20.5			
Tr	Rise time			22]	
T _{D(OFF)}	Turn-off delay time	T _{vj} =25℃, V _{CC} =400V, I _C =20A,		122		ns	
Tf	Fall time	V_{GE} =0/15V, R_g =10 Ω ,		62			
Eon	Turn-On Switching Loss	Inductive Load		0.4			
E _{off}	Turn-Off Switching Loss			0.47		mJ	
Ets	Total Switching Loss			0.87			
T _{D(ON)}	Turn-on delay time			20.5			
Tr	Rise time	T 475°C 1/ 4001/		22]	
T _{D(OFF)}	Turn-off delay time	Turn-off delay time T _{vj} =175℃, V _{CC} =400V, I _C =20A,		143		ns	
Tf	Fall time	$V_{GE}=0/15V, R_g=10\Omega,$		105			
Eon	Turn-On Switching Loss		_	0.65			
E _{off}	Turn-Off Switching Loss	Inductive Load		0.68		mJ	
Ets	Total Switching Loss			1.33			
Q _G	Total Gate Charge	$V_{CC} = 520V, I_C = 20A,$ $V_{GE} = 0/15V$		71		nC	

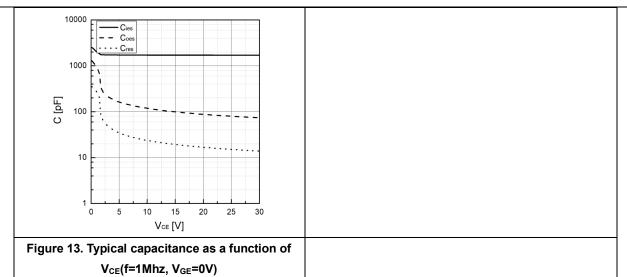


ightarrow Electrical characteristics of Diode (T_{vj}=25°C unless otherwise noted)

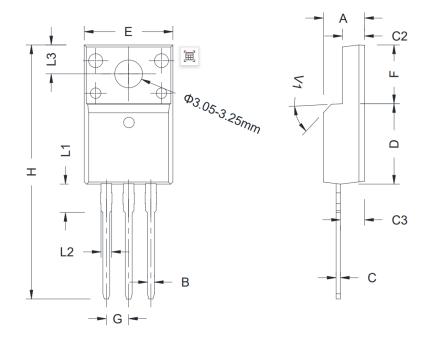
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VF	Diode forward voltage	IF=20A, T _{vj} =25℃		1.4		V
Trr	Diode reverse recovery time			45.5		ns
Irm	Diode peak reverse recovery current	VR=400V IF=20A diF/dt=400A/µs, T _{vi} =25 $^{\circ}$ C		10.3		Α
Qrr	Diode reverse recovery charge			519		nC



➤ Typical Performance Characteristics (T_{vj} =25°C unless otherwise noted)



SSC65T20GTF


SSC65T20GTF

Package Information

TO-220F

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Typ.	Max.
A	4.50	-	4.90	0.177	-	0.193
В	0.74	0.80	0.83	0.029	0.031	0.033
С	0.47	-	0.66	0.019	-	0.026
C2	2.45	-	2.75	0.096	-	0.108
С3	2.60	-	3.00	0.102	-	0.118
D	8.80	-	9.30	0.346	-	0.366
Е	9.80	-	10.40	0.386	-	0.410
F	6.40	-	6.80	0.252	-	0.268
G	2.40	-	2.70	0.094	-	0.106
Н	28.0	-	29.80	1.102	-	1.173
L1	-	3.63	-	-	0.143	-
L2	1.14	-	1.70	0.045	-	0.067
L3	-	3.30	-	-	0.130	-
V1	-	45°	-	-	45°	-

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.